skip to main content


Search for: All records

Creators/Authors contains: "D’Odorico, Valentina"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The first stars were born from chemically pristine gas. They were likely massive, and thus they rapidly exploded as supernovae, enriching the surrounding gas with the first heavy elements. In the Local Group, the chemical signatures of the first stellar population were identified among low-mass, long-lived, very metal-poor ([Fe/H] < −2) stars, characterized by high abundances of carbon over iron ([C/Fe] > +0.7): the so-called carbon-enhanced metal-poor stars. Conversely, a similar carbon excess caused by first-star pollution was not found in dense neutral gas traced by absorption systems at different cosmic time. Here we present the detection of 14 very metal-poor, optically thick absorbers at redshift z ∼ 3–4. Among these, 3 are carbon-enhanced and reveal an overabundance with respect to Fe of all the analyzed chemical elements (O, Mg, Al, and Si). Their relative abundances show a distribution with respect to [Fe/H] that is in very good agreement with those observed in nearby very metal-poor stars. All the tests we performed support the idea that these C-rich absorbers preserve the chemical yields of the first stars. Our new findings suggest that the first-star signatures can survive in optically thick but relatively diffuse absorbers, which are not sufficiently dense to sustain star formation and hence are not dominated by the chemical products of normal stars. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  2. Abstract Luminous quasars are powerful targets to investigate the role of feedback from supermassive black holes (BHs) in regulating the growth phases of BHs themselves and of their host galaxies, up to the highest redshifts. Here we investigate the cosmic evolution of the occurrence and kinematics of BH-driven outflows, as traced by broad absorption line (BAL) features, due to the C iv ionic transition. We exploit a sample of 1935 quasars at z = 2.1–6.6 with bolometric luminosity log( L bol /erg s −1 ) ≳ 46.5, drawn from the Sloan Digital Sky Survey and from the X-Shooter legacy survey of Quasars at the Reionization Epoch (XQR-30). We consider rest-frame optical bright quasars to minimize observational biases due to quasar selection criteria. We apply a homogeneous BAL-identification analysis, based on employing composite template spectra to estimate the quasar intrinsic emission. We find a BAL quasar fraction close to 20% at z ∼ 2–4, while it increases to almost 50% at z ∼ 6. The velocity and width of the BAL features also increase at z ≳ 4.5. We exclude the possibility that the redshift evolution of the BAL properties is due to differences in terms of quasar luminosity and accretion rate. These results suggest significant BH feedback occurring in the 1 Gyr old universe, likely affecting the growth of BHs and, possibly, of their host galaxies, as supported by models of early BH and galaxy evolution. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  3. ABSTRACT

    We measure the mean free path ($\lambda _{\rm mfp,H\, \small {I}}$), photoionization rate ($\langle \Gamma _{\rm H\, \small {I}} \rangle$), and neutral fraction ($\langle f_{\rm H\, \small {I}} \rangle$) of hydrogen in 12 redshift bins at 4.85 < z < 6.05 from a large sample of moderate resolution XShooter and ESI QSO absorption spectra. The fluctuations in ionizing radiation field are modelled by post-processing simulations from the Sherwood suite using our new code ‘EXtended reionization based on the Code for Ionization and Temperature Evolution’ (ex-cite). ex-cite uses efficient Octree summation for computing intergalactic medium attenuation and can generate large number of high resolution $\Gamma _{\rm H\, \small {I}}$ fluctuation models. Our simulation with ex-cite shows remarkable agreement with simulations performed with the radiative transfer code Aton and can recover the simulated parameters within 1σ uncertainty. We measure the three parameters by forward-modelling the  Lyα forest and comparing the effective optical depth ($\tau _{\rm eff, H\, \small {I}}$) distribution in simulations and observations. The final uncertainties in our measured parameters account for the uncertainties due to thermal parameters, modelling parameters, observational systematics, and cosmic variance. Our best-fitting parameters show significant evolution with redshift such that $\lambda _{\rm mfp,H\, \small {I}}$ and $\langle f_{\rm H\, \small {I}} \rangle$ decreases and increases by a factor ∼6 and ∼104, respectively from z ∼ 5 to z ∼ 6. By comparing our $\lambda _{\rm mfp,H\, \small {I}}$, $\langle \Gamma _{\rm H\, \small {I}} \rangle$ and $\langle f_{\rm H\, \small {I}} \rangle$ evolution with that in state-of-the-art Aton radiative transfer simulations and the Thesan and CoDa-III simulations, we find that our best-fitting parameter evolution is consistent with a model in which reionization completes by z ∼ 5.2. Our best-fitting model that matches the $\tau _{\rm eff, H\, \small {I}}$ distribution also reproduces the dark gap length distribution and transmission spike height distribution suggesting robustness and accuracy of our measured parameters.

     
    more » « less
  4. ABSTRACT

    The QUBRICS (QUasars as BRIght beacons for Cosmology in the Southern hemisphere) survey aims at constructing a sample of the brightest quasars with $z \lower.5ex\hbox{$\,\, \buildrel\gt \over \sim \,\,$}2.5$, observable with facilities in the Southern Hemisphere. QUBRICS makes use of the available optical and IR wide-field surveys in the South and of Machine Learning techniques to produce thousands of bright quasar candidates of which only a few hundred have been confirmed with follow-up spectroscopy. Taking advantage of the recent Gaia Data Release 3, which contains 220 million low-resolution spectra, and of a newly developed spectral energy distribution fitting technique, designed to combine the photometric information with the Gaia spectroscopy, it has been possible to measure 1672 new secure redshifts of QUBRICS candidates, with a typical uncertainty of σz = 0.02. This significant progress of QUBRICS brings it closer to (one of) its primary goals: providing a sample of bright quasars at redshift 2.5 < z < 5 to perform the Sandage test of the cosmological redshift drift. A Golden Sample of seven quasars is presented that makes it possible to carry out this experiment in about 1500 h of observation in 25 yr, using the ANDES spectrograph at the 39m ELT, a significant improvement with respect to previous estimates.

     
    more » « less
  5. ABSTRACT

    Proximity zones of high-redshift quasars are unique probes of their central supermassive black holes as well as the intergalactic medium (IGM) in the last stages of reionization. We present 22 new measurements of proximity zones of quasars with redshifts between 5.8 and 6.6, using the enlarged XQR-30 sample of high-resolution, high-SNR quasar spectra. The quasars in our sample have ultraviolet magnitudes of M1450 ∼ −27 and black hole masses of 109–1010 M⊙. Our inferred proximity zone sizes are 2–7 physical Mpc, with a typical uncertainty of less than 0.5 physical Mpc, which, for the first time, also includes uncertainty in the quasar continuum. We find that the correlation between proximity zone sizes and the quasar redshift, luminosity, or black hole mass, indicates a large diversity of quasar lifetimes. Two of our proximity zone sizes are exceptionally small. The spectrum of one of these quasars, with z  = 6.02, displays, unusually for this redshift, damping wing absorption without any detectable metal lines, which could potentially originate from the IGM. The other quasar has a high-ionization absorber ∼0.5 pMpc from the edge of the proximity zone. This work increases the number of proximity zone measurements available in the last stages of cosmic reionization to 87. This data will lead to better constraints on quasar lifetimes and obscuration fractions at high redshift, that in turn will help probe the seed mass and formation redshift of supermassive black holes.

     
    more » « less
  6. Abstract

    The mean free path of ionizing photons,λmfp, is a critical parameter for modeling the intergalactic medium (IGM) both during and after reionization. We present direct measurements ofλmfpfrom QSO spectra over the redshift range 5 <z< 6, including the first measurements atz≃ 5.3 and 5.6. Our sample includes data from the XQR-30 VLT large program, as well as new Keck/ESI observations of QSOs nearz∼ 5.5, for which we also acquire new [Cii] 158μm redshifts with ALMA. By measuring the Lyman continuum transmission profile in stacked QSO spectra, we findλmfp=9.331.80+2.06,5.401.40+1.47,3.311.34+2.74, and0.810.48+0.73pMpc atz= 5.08, 5.31, 5.65, and 5.93, respectively. Our results demonstrate thatλmfpincreases steadily and rapidly with time over 5 <z< 6. Notably, we find thatλmfpdeviates significantly from predictions based on a fully ionized and relaxed IGM as late asz= 5.3. By comparing our results to model predictions and indirectλmfpconstraints based on IGM Lyαopacity, we find that the evolution ofλmfpis consistent with scenarios wherein the IGM is still undergoing reionization and/or retains large fluctuations in the ionizing UV background well below redshift 6.

     
    more » « less
  7. ABSTRACT

    Several recent works have focused on the search for bright, high-z quasars (QSOs) in the South. Among them, the QUasars as BRIght beacons for Cosmology in the Southern hemisphere (QUBRICS) survey has now delivered hundreds of new spectroscopically confirmed QSOs selected by means of machine learning algorithms. Building upon the results obtained by introducing the probabilistic random forest (PRF) for the QUBRICS selection, we explore in this work the feasibility of training the algorithm on synthetic data to improve the completeness in the higher redshift bins. We also compare the performances of the algorithm if colours are used as primary features instead of magnitudes. We generate synthetic data based on a composite QSO spectral energy distribution. We first train the PRF to identify QSOs among stars and galaxies, then separate high-z quasar from low-z contaminants. We apply the algorithm on an updated data set, based on SkyMapper DR3, combined with Gaia eDR3, 2MASS, and WISE magnitudes. We find that employing colours as features slightly improves the results with respect to the algorithm trained on magnitude data. Adding synthetic data to the training set provides significantly better results with respect to the PRF trained only on spectroscopically confirmed QSOs. We estimate, on a testing data set, a completeness of $\sim 86{{\ \rm per\ cent}}$ and a contamination of $\sim 36{{\ \rm per\ cent}}$. Finally, 206 PRF-selected candidates were observed: 149/206 turned out to be genuine QSOs with z > 2.5, 41 with z < 2.5, 3 galaxies and 13 stars. The result confirms the ability of the PRF to select high-z quasars in large data sets.

     
    more » « less
  8. Abstract Measuring the density of the intergalactic medium using quasar sight lines in the epoch of reionization is challenging due to the saturation of Ly α absorption. Near a luminous quasar, however, the enhanced radiation creates a proximity zone observable in the quasar spectra where the Ly α absorption is not saturated. In this study, we use 10 high-resolution ( R ≳ 10,000) z ∼ 6 quasar spectra from the extended XQR-30 sample to measure the density field in the quasar proximity zones. We find a variety of environments within 3 pMpc distance from the quasars. We compare the observed density cumulative distribution function (CDF) with models from the Cosmic Reionization on Computers simulation and find a good agreement between 1.5 and 3 pMpc from the quasar. This region is far away from the quasar hosts and hence approaching the mean density of the universe, which allows us to use the CDF to set constraints on the cosmological parameter σ 8 = 0.6 ± 0.3. The uncertainty is mainly due to the limited number of high-quality quasar sight lines currently available. Utilizing the more than 200 known quasars at z ≳ 6, this method will allow us to tighten the constraint on σ 8 to the percent level in the future. In the region closer to the quasar within 1.5 pMpc, we find that the density is higher than predicted in the simulation by 1.23 ± 0.17, suggesting that the typical host dark matter halo mass of a bright quasar ( M 1450 < −26.5) at z ∼ 6 is log 10 ( M h / M ⊙ ) = 12.5 − 0.7 + 0.4 . 
    more » « less
  9. ABSTRACT The final phase of the reionization process can be probed by rest-frame UV absorption spectra of quasars at z ≳ 6, shedding light on the properties of the diffuse intergalactic medium within the first Gyr of the Universe. The ESO Large Programme ‘XQR-30: the ultimate XSHOOTER legacy survey of quasars at z ≃ 5.8–6.6’ dedicated ∼250 h of observations at the VLT to create a homogeneous and high-quality sample of spectra of 30 luminous quasars at z ∼ 6, covering the rest wavelength range from the Lyman limit to beyond the Mg ii emission. Twelve quasar spectra of similar quality from the XSHOOTER archive were added to form the enlarged XQR-30 sample, corresponding to a total of ∼350 h of on-source exposure time. The median effective resolving power of the 42 spectra is R ≃ 11 400 and 9800 in the VIS and NIR arm, respectively. The signal-to-noise ratio per 10 km s−1 pixel ranges from ∼11 to 114 at λ ≃ 1285 Å rest frame, with a median value of ∼29. We describe the observations, data reduction, and analysis of the spectra, together with some first results based on the E-XQR-30 sample. New photometry in the H and K bands are provided for the XQR-30 quasars, together with composite spectra whose characteristics reflect the large absolute magnitudes of the sample. The composite and the reduced spectra are released to the community through a public repository, and will enable a range of studies addressing outstanding questions regarding the first Gyr of the Universe. 
    more » « less
    Free, publicly-accessible full text available May 23, 2024
  10. Abstract We present a new investigation of the intergalactic medium (IGM) near the end of reionization using “dark gaps” in the Ly α forest. Using spectra of 55 QSOs at z em > 5.5, including new data from the XQR-30 VLT Large Programme, we identify gaps in the Ly α forest where the transmission averaged over 1 comoving h −1 Mpc bins falls below 5%. Nine ultralong ( L > 80 h −1 Mpc) dark gaps are identified at z < 6. In addition, we quantify the fraction of QSO spectra exhibiting gaps longer than 30 h −1 Mpc, F 30 , as a function of redshift. We measure F 30 ≃ 0.9, 0.6, and 0.15 at z = 6.0, 5.8, and 5.6, respectively, with the last of these long dark gaps persisting down to z ≃5.3. Comparing our results with predictions from hydrodynamical simulations, we find that the data are consistent with models wherein reionization extends significantly below redshift six. Models wherein the IGM is essentially fully reionized that retain large-scale fluctuations in the ionizing UV background at z ≲6 are also potentially consistent with the data. Overall, our results suggest that signatures of reionization in the form of islands of neutral hydrogen and/or large-scale fluctuations in the ionizing background remain present in the IGM until at least z ≃ 5.3. 
    more » « less